The Vibrational Frequencies of the Ethylpyridines. 101.

By J. H. S. GREEN and P. W. B. BARNARD.

The infrared and Raman spectra of 2-, 3-, and 4-ethylpyridine have been measured in the liquid state. All the frequencies and all the vibrational fundamentals are assigned for each isomer.

ALTHOUGH the infrared spectra $(2-15 \mu)$ of the ethylpyridines have been recorded,¹ the Raman displacements have not previously been measured. In the present work the infrared measurements have been extended to $25 \,\mu$ and the Raman spectra recorded. The results, together with those of similar studies of the methylpyridines² and ethylbenzene,³ lead to assignments of all the vibrational frequencies of the molecules.

¹ Sadtler Standard Spectra, Philadelphia, Nos. 1249-51.

² Green, Kynaston, and Paisley, Spectrochim. Acta, in the press. ³ Green, Spectrochim. Acta, 1962, **18**, 39.

4 154	vibia	0 E4	h-l	9 E+h		eury ip y rameet
4-E		Z-Et	Inyi	ə-Eu	1 y 1 Tas fano an 1	Assignment
Raman	Infrared	Raman	Infrared	Raman	Infrared	Assignment
3029m	3072s 3035s	3064w 3013w	3072s 3006s	3046s 3031s	$3087m \\ 3035m $	$\nu_2, \nu_{7b}, \nu_{20a}, \nu_{20b}$
	2977s	2971m	2970s	2971m	2977 vs	CH_3 and CH_2 antisym. str.
2935s	2942s	2938s	2936s	2935s		CH ₃ antisym. str.
2914s	2900s	2907m		3 903w	2900w	$2 \times 1450 = 2900$
	2881s		2873s	2871m	2872s	CH ₃ and CH ₂ sym. str.
	1983w		1983w			$2\nu_1$
			1952w			$\nu_{17a} + \nu_{1}$
					1974w	$\nu_{12} + \nu_{17a}$
	1937 m		1921w			$2\nu_{17a}$
			1868w		1000	$2\nu_5$
	1040		1049		1922w	$\nu_{17a} + \nu_{5}$
	1848m		1842w		1909m	$\nu_{17a} + \nu_{10a}$
	1783w				1009	$\nu_{17a} + \nu_{10b}$
					1005VW	$\nu_{10a} + \nu_5$
	1791		1779m		1740vw	$\nu_{10a} + \nu_{10b}$
	1731W		177311		1640	$2\nu_{10a}$
1600-	16090	1580a	1505c	1586	1500ch	$\nu_4 + \nu_5$
1553	1561	1568m	15790	1573m	1578s	V 8a
1000 %	10013	1000111	10/05	1532vw	10,05	$\nu_{so} + \nu_{so}$
		1534vw		100-10		$\nu_{10} + \nu_{12}$
1495w	1499s		1479s		1481s	V19a
1452m	1461s	1457m	1460s	1452m	1463 vs	CH_3 antisym. def. and CH_2 bend
	1436w					$2\nu_4$
1418vw	1415s	1440m	1438s	$1429 \mathrm{vw}$	1425 vs	ν_{19b}
				$1381 \mathrm{vw}$	1379m	CH ₃ sym. def.
	1376m	1378vw	1372m		1367sh	v_{14}
1010	1015	1330w	1332vw	1010	1015	762 + 571 = 1333
1319w	1315m	1296vw	1300m	1319VW	1317m	ν_3
				1278VW	127211	CH twist and wage 9.
	1961	1949	1951	1201VW	1999	CII_2 twist allu wag, $2\nu_{6b}$
1900	1201VW	1240VW	1991	1210m	1200 W J	"
12003	12103	1147w	1147s	1186m	11885	*13 Voc
1112vw))	1131w	1127s	- ya Vieh
	1097w }	1105w	1106m ³	1106w	1108s	CH, rock
			1060sh			$\nu_{\rm ea} + \nu_{11}$
					1063m	ČH ₃ rock
1066m	1066s	1049s	1050s շ	1041vs	1044m	V18a
1026 vw	1031sh		5			CH ₃ rock
997vs	995s	995s	995s	1026(5)	1024vs	ν_1
974m	971m	0.75	071		000.	V _{17a}
	962sh	975m	971m		966s J	$\nu(C-C)$
074	074	800	9095n	099	948111	ν_5
874VS	874W	890w	885111	9999 V W	924W 800we	ν_{10a}
779s	777s	7849	7965	802m	00073	V 100
1105	750m	1013	762s	778m	779s	CH _a rock
	, 00 m		749vs			Viab
720vw	722w		719 sh	718w	714vs	ν_A
671m	665w	629m	626m	630m	629s	ν _{eb}
569w	562s	572w	571m	$567 \mathrm{vw}$	567 w	ν_{11}
493m	490s	500m	497s	488m	481 w	ν_{6a}
400w		405w	406w	402w	405 vw	ν_{16a}
378vw		200		354vw		ð(CCC)
292vw		290w		279vw		ν_{15}
144m		1528	~h	100S		V16b
			SI	suouidei		

TABLE 1.

Vibrational frequencies and assignment of the ethylpyridines.

The frequencies are assembled in Table 1, all relating to the liquid state. The assignments are given in the notation for pyridine ⁴ and other monosubstituted pyridines, and a comparison with the values for the methylpyridines is made in Table 2 which also lists the corresponding frequencies for ethylbenzene with some minor changes of notation.

⁴ Wilmshurst and Bernstein, Canad. J. Chem., 1957, 35, 1183.

TABLE 2.

Fundamental vibrational frequencies of the methyl- and ethyl-pyridines and of ethylbenzene.

					2				
	Mod	e	4-Me ²	4-Et	2-Me ²	2-Et	3-Me ²	3-Et	PhEt ³
a'	a_1	2	3050	3072	3080	3072	3085	3087	3080
	•	20a	3040	3035	3046	3006	3054	3035	3064
		8a	1604	1603	1590	1595	1594	1590	1613
		19a	1495	1499	1475	1479	1477	1480	1499
		13 *	1212	1219	1236	1220	1227	1219	1179
		9a	1220	1219	1143	1147	1190	1187	1201
		18a	1070	1066	1047	1050	1041	1041	1031
		1	994	995	994	995	1025	1026	1003
		12 *	801	779	800	784	800	802	771
		6a *	514	493	548	500	538	488	487
a'' b.	b_{2}	20b	3040	3072	3080	3072	3085	3087	3080
	-	7b	310	3035	3046	3006	3030	3035	3040
		8b	1566	1561	1565	1573	1575	1578	1585
		19b	1417	1415	1440	1438	1414	1425	1441
		14	1365	1376	1376	1372	1340	1367	1330
		3	1289	1315	1291	1300	1286	1317	1330
		18b	1090	1097	1099	1106	1106	1127	1156
		6b	669	671	629	626	628	629	624
		15 *	341	292	259	290	338	299	314
a'	b_2	17a	972	962	972	971	987	966	964
	_	10a	872	874	886	886	923	924	840
		16a	384	400	403	405	399	402	404
a''	b_1	5	872	874	940	959	941	948	985
		10b	799	822	751	749	788	809	745
		4	728	707	729	719	708	714	696
		11 *	490	562	470	572	457	567	556
		16b *	211	144	203	152	217	153	158
CH3 sym. str.		2934	2881	2925	2873	2923	2872	2890	
antisym. str.			2959	2940	2960	2938	2980	2935	2950
sym. bend		1383	1376	1376	1372	1385	1379	1374	
antisym. bend		1445	1461	1440	1460	1452	1463	1456	
rock)		1042	1031	1040	1050	1043	1063	1031	
		5	1042	1097	1040	1106	1043	1108	1091
CH ₂ sym. str.			2881		1873		2872	2890	
antisym. str.			2977		2970		2977	2974	
bend				1461		1460		1463	1456
twist and wag			1252		1251		1261	1246	
rock			750		762		779	787	
v(C-0	C)			971		971		966	964
S(CC	C)			378				354	365

* X-Sensitive vibration.

4-Ethylpyridine has, at most, a plane of symmetry perpendicular to the ring if the equilibrium configuration of the ethyl group is assumed to be as in ethylbenzene; the point group is C_s , so that the vibrations comprise only a' (planar) and a'' (non-planar) modes. 2- and 3-Ethylpyridine are entirely without symmetry. In all the molecules all frequencies are permitted in both the Raman and the infrared spectra and the selection rules are of little value. Nevertheless, the modes associated with the ring behave, to a good approximation, as if the plane of the ring is preserved and it is reasonable to make a classification of the vibrations on that basis.

For ethylpyridines, assignments for the pyridine ring substituted in the 2-, 3-, and 4-position were based on those for the corresponding methyl compound; assignments for the X-sensitive modes, and for those associated with the ethyl group, were made by using ethylbenzene as a guide. A few points deserve special mention.

Of the planar ring vibrations, all those derived from the a_1 class of monosubstituted pyridines with C_{2v} symmetry are readily located; the lowest X-sensitive mode, appearing throughout as a medium Raman line at 490 cm.⁻¹, is surprisingly weak in the infrared spectrum of 3-ethylpyridine. Arguments have been given previously for placing the b_2 -derived frequencies v_3 and v_{14} at *ca.* 1290 and 1370 cm.⁻¹, respectively. Candidates for the former are available in 2-, 3-, and 4-ethylpyridine at 1300, 1317, and 1315 cm.⁻¹, respectively. In 2-methylpyridine, v_{14} was not resolved from the symmetrical methyl deformation, nor was it with 2- and 4-ethylpyridine; in 3-ethylpyridine, v_{14} is probably the shoulder of medium intensity at 1367 cm.⁻¹, almost completely resolved from the methyl mode at 1379 cm.⁻¹.

The a_2 -derived frequencies are known to be almost independent of the substituent; for 2- and 3-ethylpyridine the highest is lost under the v(C-C) skeletal stretch of the ethyl group, whilst the lowest, usually slightly lower for 4- than for 2- or 3-substituted pyridines, is for 4-ethylpyridine just beyond the range of the present infrared measurements.

For ethylbenzene the out-of-plane ring bending mode (v_{11} here) was placed at 567 cm.⁻¹, raised above its expected position at about 470 cm.⁻¹ by interaction with the skeletal bending of the ethyl group. Similar candidates at *ca*. 565 cm.⁻¹ are available in all the ethylpyridines. The relative intensities of these bands, which are strong, medium and weak in 4-, 2-, and 3-ethylpyridine, respectively, parallel those for other monosubstituted pyridines.²

The pattern of combination bands in the 1600—1900 cm.⁻¹ region is in accord with that found previously.²

The methyl stretching and bending vibrations are obviously located, but the rocking modes are assigned with less certainty; alternatives for one or both of them are coincidences with the row assigned to v_{18a} . Likewise only weak or very weak bands are available for the methylene wagging and twisting vibrations in the range 1230—1270 cm.⁻¹, but the methylene rocking vibration is found in the range 750--780 cm.⁻¹ as a band of strong or medium intensity.

The bending vibration δ (CCC) of the ethyl group in ethylbenzene was assigned to the weak band at 365 cm.⁻¹ on a basis of the calculated value ⁵ of 380 cm.⁻¹. (An alternative attribution, ⁶ 557 cm.⁻¹, is considered to be an unreasonably high value, and this frequency is otherwise assigned above.) In view of the close similarity of the values of the frequencies ν_{15} and ν_{16b} of the methylpyridines to those for toluene,⁷ it is clear that repetition of the calculation with a pyridine nucleus will yield nearly the same value for δ (CCC) in the ethylpyridines as in ethylbenzene. Weak Raman shifts of 354 and 378 cm.⁻¹ observed for 3- and 4-ethylpyridine are accordingly assigned to δ (CCC).

Experimental.—Distilled samples (Midland Tar Distillers Ltd.) of the ethylpyridines were dried and fractionated, and the course of removal of a few weak bands from the infrared spectrum followed. The materials used had b. p. $91^{\circ}/20$ mm. (2-), $165 \cdot 5^{\circ}/748$ mm. (3-), and $167 - 168^{\circ}/760$ mm. (4-ethylpyridine). A second sample of 4-ethylpyridine, synthesised in this laboratory, gave an identical spectrum after redistillation (b. p. $166^{\circ}/760$ mm.).

Spectral measurements were made as previously described.⁷

We thank the Midland Tar Distillers Ltd. for a gift of materials.

NATIONAL CHEMICAL LABORATORY, D.S.I.R., TEDDINGTON, MIDDLESEX.

[Received, July 27th, 1962.]

⁵ Taylor and Pitzer, J. Res. Nat. Bur. Stand., 1947, 38, 1.

⁶ Bellanato and Schmid, Anales real Soc. españ. Fís. Quím., 1960, 61, 949.

⁷ Green, J., 1961, 2236.